We thank Drs R. R. Whittle and G. P. Wooden for useful discussions.

References

Corfield, P. W. R., Doedens, R. J. \& Ibers, J. A. (1967). Inorg. Chem. 6, 197-204.
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, Table 2.2A. Birmingham: Kynoch Press.
Enraf-Nonius (1979). Structure Determination Package. EnrafNonius, Delft.
Fromm, E. \& Kapeller-Adler, R. (1928). Justus Liebigs Ann. Chem. 467, 240-274.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.

Klayman, D. L., Maul, J. J. \& Milne, G. W. (1967). Tetrahedron Lett. pp. 281-284.
Klayman, D. L., Maul, J. J. \& Milne, G. W. (1968). J. Heterocycl. Chem. 5, 517-522.
Main, P., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1978). MULTAN78. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Rasmussen, C. R., Gardocki, J. F., Plampin, J. N., Twardzik, B. L., Reynolds, B. E., Molinari, A. J., Schwartz, N., Bennetts, W. W., Price, B. E. \& Marakowski, J. (1978). J. Med. Chem. 21, 1044-1054.
Rasmussen, C. R., Villani, F. J. Jr, Mutter, M. S. \& Griffin, E. A. (1984). In the press.

Wooden, G. P., Hoskin, D. H. \& Olofson, R. A. (1981). Acta Cryst. B37, 722-724.

A Polarized Twisted Ethylene: (1,3-Dimethyl-2-imidazolidinylidene)phenylacetonitrile, $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{3}$

By Nirupa Sen (née Kamath) and K. Venkatesan
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India
and K. R. Acharya and T. N. Guru Row
National Chemical Laboratory, Poona 411 007, India

(Received 4 June 1984; accepted 3 September 1984)

Abstract

M_{r}=213 \cdot 13\), orthorhombic, $P 2_{1} 2_{1} 2_{1}, a=$ 9.858 (2) , $\quad b=10.951$ (2), $\quad c=10.984$ (2) A,$\quad V=$ $1185 \cdot 8 \AA^{3}, Z=4, D_{m}=1 \cdot 191$ (2) (by flotation method in KI solution), $D_{x}=1 \cdot 194$ (2) $\mathrm{g} \mathrm{cm}^{-3}, \lambda($ Mo $K \alpha)=$ $0.7107 \AA, \mu=0.41 \mathrm{~cm}^{-1}, \quad F(000)=456, T=293 \mathrm{~K}$. Final $R=0.041$ for 875 significant reflections. The $C=C$ bond length is $1.382(4) \AA$, significantly longer than that in ethylene, $1.336(2) \AA$. The molecule is twisted about the $\mathrm{C}=\mathrm{C}$ bond by $23 \cdot 1(4)^{\circ}$ and the phenyl group is rotated out of the plane of this bond by $39.4(4)^{\circ}$. Molecular packing is determined by van der Waals forces.

Introduction. Polarized twisted ethylenes having donors such as the 1,3 -dimethyl-2-imidazolidinylidene ring and phenyl and cyano groups as acceptors have been investigated by X-ray crystallography (Adhikesavalu, Kamath \& Venkatesan, 1983; Abrahamsson, Rehnberg, Liljefors \& Sandström, 1974; Sen \& Venkatesan, 1984).

We have now investigated the molecular structure of (1,3-dimethyl-2-imidazolidinylidene)phenylacetonitrile with a strong donor and weak acceptor combination.

0108-2701/84/122122-03\$01.50

Experimental. Single crystals of title compound obtained from toluene by slow evaporation, approximate dimensions $0.2 \times 0.4 \times 0.6 \mathrm{~mm}$. Preliminary Weissenberg photographs indicated that the crystals are orthorhombic. Lattice parameters refined using a least-squares fit to the settings for 25 accurately centered reflections. Nonius CAD-4-11M diffractometer, monochromated Mo $K \alpha$ radiation, $\omega / 2 \theta$ scan mode, $\theta \leq 24^{\circ}$. During data collection three standard reflections $(400,004,123)$ showed only statistical variation within $\pm 2 \%$. 1141 reflections collected, $h k l$ range: $h 0$ to $11, k 0$ to $12, l 0$ to 12,875 significant, $\left|F_{o}\right| \geq 3 \sigma\left(\left|F_{o}\right|\right)$. Data not corrected for absorption. Structure solved by direct methods (MULTAN80; Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980). Full-matrix refinement (SHELX76; Sheldrick, 1976) of a scale factor, positional and anisotropic thermal parameters (isotropic thermal parameters for H atoms, located from a difference map) converged to $R=0.041, \quad R_{w}=0.037, \quad S=1.97 ;$ $\sum w\left(\left|F_{o}\right|-\left|F_{c}\right|\right)^{2} \quad$ minimized where $\quad w=1.2213 /$ $\left[\sigma^{2}(F)+0.00002\left|F_{o}\right|\right] . \Delta / \sigma$ for non-H atoms ~ 0.001. Final difference map featureless. Atomic scattering
© 1984 International Union of Crystallography
factors from International Tables for X-ray Crystallography (1974).

Discussion. Positional coordinates of the non-H atoms are recorded in Table 1.* Table 2 gives some of the important torsion angles. Fig. 1 gives the view and the numbering scheme and Fig. 2 the bond lengths and angles for non- H atoms.
The $\mathrm{C}=\mathrm{C}$ bond length of 1.382 (4) \AA is signficantly longer than the $\mathrm{C}=\mathrm{C}$ bond in ethylene $[1.336$ (2) \AA; Bartell, Roth, Hollowell, Kuchitsu \& Young, 1965]. The value in (1,3-dimethyl-2-imidazolidinylidene)malononitrile is 1.407 (3) \AA (Adhikesavalu \& Venkatesan, 1982) and that in 3-(1,3-dimethyl-2-imidazolidinylidene)-2,4-pentanedione trihydrate is 1.468 (3) \AA (Adhikesavalu \& Venkatesan, 1983), indicating that the acceptor strength increases in the order $\mathrm{Ph}<\mathrm{CN}<\mathrm{COCH}_{3}$.
The rotation about the $\mathrm{C}=\mathrm{C}$ bond as measured by the angle between the planes through the atoms $\mathrm{N}(2)$, $\mathrm{C}(3), \mathrm{N}(3)$ and $\mathrm{C}(8), \mathrm{C}(2), \mathrm{C}(1)$ is $23 \cdot 1(4)^{\circ}$. The phenyl group twists out of the plane of the ethylene bond by $39.4(4)^{\circ}$ whereas in 3-dimethylamino-3-methylthio-2-phenylacrylonitrile (Sen \& Venkatesan, 1984) the phenyl group is rotated out of the plane of the group by $43 \cdot 9$ (4) ${ }^{\circ}$.

The conjugation has resulted in a shortening of the $\ddot{\mathrm{N}}-\mathrm{C}_{s p^{2}}$ (donor C) bonds $[\mathrm{N}(2)-\mathrm{C}(3) \quad 1.363(4)$; $\mathrm{N}(3)-\mathrm{C}(3) 1 \cdot 360(3) \AA]$ in comparison with the corresponding $\mathrm{N}-\mathrm{C}$ distances of $1.395(3)$ and 1-403 (3) \AA in $\quad N, N^{\prime}, N^{\prime \prime}, N^{\prime \prime \prime}$-tetraphenyl-2, 2^{\prime}-bi(imidazolidinylidene) (Hitchcock, 1979), while on the acceptor side the $\mathrm{C}(1)-\mathrm{C}(2)$ bond of $1.418(5) \AA$ is shorter than the corresponding $\mathrm{C}-\mathrm{CN}$ distance of 1.437 (2) \AA in ethylenetetracarbonitrile (Little, Pautler \& Coppens, 1971).
The imidazolidine ring is non-planar with approximate C_{2} symmetry. The twofold axis passes through the atom $\mathrm{C}(3)$ and bisects the $\mathrm{C}(4)-\mathrm{C}(5)$ bond. The torsion angles within this ring about the bonds $\mathrm{C}(4)-\mathrm{N}(2)$, $\mathrm{N}(2)-\mathrm{C}(3), \mathrm{C}(3)-\mathrm{N}(3), \mathrm{N}(3)-\mathrm{C}(5)$ and $\mathrm{C}(5)-\mathrm{C}(4)$ are $12.9(4),-5.6(3),-4.7(3), \quad 12.4(4)$ and $-14.6(4)^{\circ}$. The pyramidality at $\mathrm{N}(2)$ is $-0.242(3)^{\circ}$ and at $\mathrm{N}(3) 0.252(3)^{\circ}$ with the N atoms deviating in opposite directions.
The value of $\chi[\mathrm{C}(3)]$ is $3.1(4)^{\circ}$ and $\chi[\mathrm{C}(2)]$ is $4.4(4)^{\circ}$ as calculated by the method described by Winkler \& Dunitz (1971) for the out-of-plane bending of atoms.

[^0]Table 1. Final positional (fractional) parameters for non -H atoms $\left(\times 10^{4}\right)$ with equivalent isotropic temperature factors $\left(\times 10^{2}\right)$
E.s.d.'s are given in parentheses. The temperature factor is of the form: $U_{\text {eq }}=\frac{1}{3} \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.

	x	y	z	$U_{\text {eq }}\left(\AA^{2}\right)$
N(1)	1055 (4)	1831 (3)	1978 (3)	8.82 (13)
C(1)	1159 (4)	1813 (3)	3018 (3)	$6 \cdot 13$ (11)
C(2)	1271 (3)	1836 (3)	4305 (3)	4.87 (10)
C(3)	997 (3)	781 (2)	4949 (2)	4.67 (10)
N(2)	567 (3)	738 (2)	6127 (2)	$5 \cdot 30$ (8)
N(3)	1052 (3)	-376 (2)	4500 (3)	$6 \cdot 15$ (9)
C(4)	185 (5)	-506 (3)	6468 (4)	6.91 (14)
C(5)	747 (5)	-1266 (3)	5443 (4)	7.28 (14)
C(6)	-160 (5)	1711 (4)	6731 (4)	6.49 (13)
C(7)	2003 (6)	-745 (5)	3569 (6)	9.48 (21)
C(8)	1591 (3)	3038 (2)	4840 (3)	4.59 (9)
C(9)	2487 (3)	3144 (3)	5818 (3)	5.32 (11)
C(10)	2828 (4)	4264 (3)	6290 (3)	$6 \cdot 24$ (12)
C(11)	2297 (4)	5313 (3)	5787 (4)	6.73 (13)
C(12)	1427 (4)	5230 (3)	4822 (4)	6.95 (13)
C(13)	1069 (4)	4115 (3)	4361 (3)	$6 \cdot 06$ (12)

Table 2. Some important torsion angles $\left({ }^{\circ}\right)$
$N(2)-C(3)-C(2)-C(1)-154 \cdot 1$ (3) $\quad N(3)-C(3)-C(2)-C(8)-161 \cdot 6(3)$
$N(2)-C(3)-C(2)-C(8) \quad 21.5(5) \quad C(3)-C(2)-C(8)-C(9) \quad 43.8(5)$ $\mathrm{N}(3)-\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1) \quad 22 \cdot 7(4) \quad \mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(8)-\mathrm{C}(13)-139.3$ (3)

Fig. 1. A perspective view of the molecule viewed down the a axis with the numbering scheme.

Fig. 2. Bond lengths (\AA) and angles $\left(^{\circ}\right)$ of non-H atoms (e.s.d.'s are given in parentheses).

Fig. 3. Packing of the molecules viewed down the a axis.

The NMR rotational barrier is $39.7 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Sandström, Sjostrand \& Wennerbeck, 1977) for the title compound and $59.4 \mathrm{~kJ} \mathrm{~mol}^{-1}$ (Sandström, 1983) for $\quad 3$-dimethylamino-3-methylthio-2-phenylacrylonitrile. We have earlier observed a correlation between rotational barrier os $\mathrm{C}=\mathrm{C}$ bond length in push-pull systems (Kamath \& Venkatesan, 1984). However, surprisingly the above-mentioned two compounds having the same weak acceptor combination of (-Ph , -CN) deviate from the observed correlation referred to above. The reason for this deviation is not obvious.

There are no intermolecular contacts of any special significance and the molecule is mostly stabilized by van der Waals interactions (Fig. 3). The illustrations were made with the ORTEPII program (Johnson, 1976).

We thank the University Grants Commission of India for financial support. We are grateful to Professor J. Sandström, University of Lund, Sweden, for providing the sample and for many valuable comments.

References

Abrahamsson, S., Rehnberg, G., Liljefors, T. \& Sandström, J. (1974). Acta Chem. Scand. Ser. B, 28, 1109-1120.

Adhikesavalu, D., Kamath, N. U. \& Venkatesan, K. (1983). Proc. Indian Acad. Sci. Sect. A, 92(4 and 5), 449-456.
Adhikesavalu, D. \& Venkatesan, K. (1982). Acta Cryst. B38, 855-859.
Adhikesavalu, D. \& Venkatesan, K. (1983). Acta Cryst. C39, 1044-1048.
Bartell, L. S., Roth, E. A., Hollowell, C. D., Kuchitsu, K. \& Young, J. E. (1965). J. Chem. Phys. 42, 2683-2686.
Нıтснсоск, Р. B. (1979). J. Chem. Soc. Dalton Trans. pp. 1314-1317.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee.
Kamath, N. U. \& Venkatesan, K. (1984). Acta Cryst. C40. 559-562.
Little, R. G., Pautler, D. \& Coppens, P. (1971). Acta Cryst. B27, 1493-1499.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). MULTAN80. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Sandström, J. (1983). Static and Dynamic Stereochemistry of Push-Pull and Strained Ethylenes in Topics in Stereochemistry, Vol. 14, edited by L. Allinger, E. L. Eliel \& S. H. Wilen, pp. 83-181. New York: John Wiley.
Sandström, J., Sjostrand, U. \& Wennerbeck, I. (1977). J. Am. Chem. Soc. 99, 4526-4527.
Sen (née Kamath), N. \& Venkatesan, K. (1984). Acta Cryst. C40, 1730-1733.
Sheldrick, G. M. (1976). SHELX76. A program for crystal structure determination, Univ. of Cambridge, England.
Winkler, F. K. \& Dunitz, J. D. (1971). J. Mol. Biol. 59, 169-182.

Acta Cryst. (1984). C40, 2124-2126

α-Méthyl-dopa, $\mathrm{C}_{10} \mathrm{H}_{\mathbf{1 3}} \mathrm{NO}_{\mathbf{4}} \cdot \mathbf{1 , 5} \mathbf{5 H}_{\mathbf{2}} \mathrm{O}$

Par A. Neuman, H. Gillier et D. Avenel
 Laboratoire de Chimie Structurale Biomoléculaire, UER Santé, Médecine et Biologie Humaine, Université Paris-Nord, 74 rue Marcel Cachin, 93012 Bobigny CEDEX, France

et G. Perret
Laboratoire de Pharmacologie Clinique et Expérimentale, UER Santé, Médecine et Biologie Humaine, Université Paris-Nord, 74 rue Marcel Cachin, 93012 Bobigny CEDEX, France
(Rȩ̧u le 20 mars 1984, accepté le 6 septembre 1984)

> Abstract. $M_{r}=238$, monoclinic, $P 2_{1}, a=14.30$ (1), $b=8.678(5), \quad c=8.911(5) \AA, \quad \beta=96.57(1)^{\circ}, \quad V=$ $1098.55 \AA^{3}, \quad Z=4, \quad D_{x}=1.439 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \mathrm{Cu} K \alpha, \lambda=$ $1.5418 \AA, \mu=10 \cdot 12 \mathrm{~cm}^{-1}, F(000)=508, T=298 \mathrm{~K}$,

> 0108-2701/84/122124-03\$01.50
$R=0.049$ for 3402 reflexions. The two symmetrically independent molecules show the two gauche conformations of the nitrogen atom relative to the $\mathrm{C}(7)-\mathrm{C}(8)$ bond with the carboxylic group gauche in © 1984 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters, H -atom positions and their isotropic temperature factors and bond lengths and angles for H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 39702 (12 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

